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Adipose stem cell‑derived extracellular 
vesicles ameliorates corticosterone‑induced 
apoptosis in the cortical neurons via inhibition 
of ER stress
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Abstract 

Background:  Corticosterone (CORT) can induce neuronal damage in various brain regions, including the cerebral 
cortex, the region implicated in depression. However, the underlying mechanisms of these CORT-induced effects 
remain poorly understood. Recently, many studies have suggested that adipose stem cell-derived extracellular vesi‑
cles (A-EVs) protect neurons in the brain.

Methods:  To investigated neuroprotection effects of A-EVs in the CORT-induced cortical neurons, we cultured 
cortical neurons from E15 mice for 7 days, and the cultured cortical neurons were pretreated with different numbers 
(5 × 105–107 per mL) of A-EVs (A-EVs5, A-EVs6, A-EVs7) for 30 min followed by administration of 200 μM CORT for 24 h.

Results:  Here, we show that A-EVs exert antiapoptotic effects by inhibiting endoplasmic reticulum (ER) stress in 
CORT-induced cortical neurons. We found that A-EVs prevented neuronal cell death induced by CORT in cultured 
cortical neurons. More importantly, we found that CORT exposure in cortical neurons resulted in increased levels of 
apoptosis-related proteins such as cleaved caspase-3. However, pretreatment with A-EVs rescued the levels of cas‑
pase-3. Intriguingly, CORT-induced apoptosis involved upstream activation of ER stress proteins such as GRP78, CHOP 
and ATF4. However, pretreatment with A-EVs inhibited ER stress-related protein expression.

Conclusion:  Our findings reveal that A-EVs exert antiapoptotic effects via inhibition of ER stress in CORT-induced cell 
death.

Keywords:  Adipose stem cell-derived extracellular vesicles (A-EVs), Corticosterone, Apoptosis, ER stress, Cortical 
neurons
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Background
Extracellular vesicles (EVs) are lipid bilayer membrane 
particles endogenously released from many different cell 
types under both normal and pathological conditions [1]. 
Endogenously released EVs carry various cargoes, includ-
ing DNAs (mitochondrial DNA, single-stranded DNA, 
double-stranded DNA), RNA species (mRNA, micro-
RNA, long noncoding RNA, and other RNA species), 
and membrane proteins, including receptors and major 
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histocompatibility complex (MHC) molecules, which 
mediate intercellular communication through the trans-
port and exchange of these cargoes [2, 3]. Due to this bio-
logical activity, EVs have innate therapeutic potential in 
tumorigenesis, the spread of viruses, neurodegenerative 
diseases and infectious diseases [4]. Moreover, the thera-
peutic role of EVs has been shown in neuroinflammation, 
neurodegeneration, cancers and disorders that affect 
the central nervous system (CNS) [5, 6]. These effects 
are because EVs play an important role in the nervous 
system, not only providing communication between 
neurons and glial cells in the brain but also causing inter-
connection of body systems and the CNS [7]. Therefore, 
various studies are conducted to assess the therapeutic 
role of EVs in these CNS-related diseases [8–11].

The physiological stress response involves the rapid 
activation of the sympatho-adrenal axis and the release 
of catecholamines from the adrenal medulla and induces 
the release of glucocorticoids [12]. Exposure to these per-
sistent psychological stresses leads to hyperactivity of the 
hypothalamic–pituitary–adrenal (HPA) axis and elevated 
glucocorticoid levels [13, 14]. Glucocorticoids are a class 
of steroid hormones produced from the adrenal cortex 
in the form of corticosterone (CORT) in rodents and 
cortisol in humans [15] and are critical for the regula-
tion of development, metabolism and immune functions 
[16]. Specifically, prolonged exposure to CORT leads 
to neuronal damage, particularly in the hippocampus, 
which is enriched with corticosteroid receptors [14, 17, 
18]. However, the definite cellular mechanisms underly-
ing CORT-induced neuronal cell damage have not been 
fully elucidated. Previous studies have proven that per-
sistent exposure of nerve cells to high concentrations of 
CORT causes DNA damage, induces differential protein 
activation and consequently leads to nerve cell apoptosis 
[19, 20]. Accumulating reports have shown that oxida-
tive stress may contribute to neuronal injury induced by 
CORT [21–23]. Moreover, this oxidative imbalance was 
reported to trigger endoplasmic reticulum (ER) dysfunc-
tion [24, 25].

In the present study, we aimed to determine whether 
CORT is responsible for apoptosis in primary cultured 
cortical neurons and to investigate the protective effects 
of A-EVs. In addition, we discuss whether the neuropro-
tective effects of EVs occur via inhibition of ER stress-
mediated apoptotic pathways.

Methods
Reagents
The CORT (CAS number: 50-22-6, catalog number: 
27840, Sigma-Aldrich, St. Louis, MO) was more than 
99% pure and dissolved in dimethyl sulfoxide (DMSO) 

(CAS number: 67-68-5, catalog number: D8418, Sigma-
Aldrich, St. Louis, MO).

Primary neuronal cultures
Primary neuronal culture was described previously [26, 
27]. In brief, cerebral cortex from E15 mice was isolated 
under dissecting microscope and were treated with 0.05% 
trypsin-EDTA (25300054, Gibco) for 10 min at 37 °C. The 
enzyme reaction was neutralized by sequential washes 
with neat FBS and culture medium, neurobasal (21103-
049, Gibco) containing B27 (A35828-01, Gibco) and N-2 
Supplements (17502-048, Gibco), 2  mM L-Glutamine 
(25030-081, Gibco), and Penicillin–Streptomycin (100 U/
ml and 100 μg/ml, respectively; 15140-122, Gibco). After 
dissociation by gentle pipetting, neurons were counted 
and plated (1 × 105 cells/cm2) onto coated (50  μg/ml 
poly-D-lysine and 10  μg/ml laminin) coverslips or cul-
ture plate. Following 7 days of in vitro culture, the corti-
cal neurons were pretreated with A-EVs (for 30 min) or 
ISRIB (1 μM, for 1 h). After that, CORT (200 μM, unless 
otherwise stated) were treated for 24 h.

Preparation and characterization of A‑EVs
Cell culture and A‑EVs isolation from conditioned medium
Primary human ADSCs were purchased from CEFO 
Bio Co., Ltd (Seoul, Korea) and maintained in growth 
medium (Minimum Essential Medium (MEM)-α con-
taining 10% fetal bovine serum (FBS), 20  μg/mL bFGF 
and 10  μg/mL Gentamicin) at 37  °C in 5% CO2. After 
reaching 80–90% confluence, the medium was changed 
to conditioned medium (phenol red free Dulbecco’s 
Modified Eagle Medium (DMEM) containing 1% sodium 
pyruvate, 1% L-glutamine and 10 μg/mL Gentamicin) for 
24 h. 500 mL of collected conditioned media (CM) was 
pre-filtered using a 0.2-μm bottle top filter to remove cell 
debris and large impurities. The filtered CM was purified 
and concentrated by using tangential flow filtration (TFF) 
systems (Repligene) with a hollow filter unit (300-kDa 
MWCO). While the media circulated in the TFF systems, 
small molecules less than 300  kDa are filtered out, and 
A-EVs were concentrated. To obtain a high-purity exo-
some solution, the concentrated solution was diluted by 
phosphate-buffered saline (PBS) and re-circulated in the 
TFF systems. Eventually, small molecules were washed 
out, and 10–15 mL of concentrated A-EVs were obtained. 
Isolated A-EVs were aliquoted and stored at below 
− 70  °C until use.

Nanoparticle tracking analysis (NTA)
The particle concentration and size distribution of 
A-EVs were measured by nanoparticle tracking analy-
sis (Nanosight LM10, malvern Instruments Ltd). A-EVs 
were resuspended in PBS to obtain a concentration 
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within the recommended measurement range (20–30 
particles/frame), corresponding to dilutions from 1:10 
to 1:100 depending on the initial sample concentration. 
The software settings for analysis were as follows: detec-
tion threshold 3; temperature between 22 °C; number of 
frames 30 and measurement time 30 s. The size distribu-
tion and particle concentration each represent the mean 
of three individual measurements.

Transmission electron microscopy
To visualize the morphology of A-EVs, transmission elec-
tron microscopy image analysis was performed. A-EVs 
were fixed with 0.5% glutaraldehyde solution overnight. 
The fixed A-EVs were centrifuged at 13,000×g for 3 min. 
Then the supernatant was removed. Next, the pellets 
were dehydrated in absolute ethanol for 10  min and 
placed on formvar–carbon-coated copper grids (TED 

PELLA, Inc., Redding, CA, USA). The grids were stained 
with 1% phosphotungstic acid for 1 min and then washed 
several times with absolute ethanol solution. The grids 
were thoroughly dried off and then analyzed with a JEM-
2100 F field emission electron microscope (JEOL Ltd., 
Japan).

Flow cytometry analysis
Flow cytometry analysis (FACS) of A-EVs was performed 
using a commercially available Exo-Flow capture kit 
(System Biosciences, CA, USA) according to the manu-
facturer’s protocol. Briefly, isolated A-EVs were captured 
on microbead with CD9, CD63, CD81, GM130 and Cal-
nexin antibodies provided in the kit. The A-EVs-micro-
bead complexes were stained by Exo-FITC and analyzed 
by FACS (Novocyte Flow Cytometer, ACEA Bioscience, 

Fig. 1  Corticosterone-induced apoptosis in cortical neurons. A Cell viability was measured after treatment with 50–500 μM corticosterone 
for 24 h in primary cultured cortical neurons. n = 6. B Expression of total or cleaved Caspase-3 expression was detected by immunoblot in 
corticosterone-treated cells. C Quantitative analysis was showed on cleaved Caspase 3 per total caspase 3 protein expression. n = 4. D Fluorescence 
imaging of TUNEL staining after corticosterone treated-cortical neurons. Scale bar = 50 μm E Quantitative analysis was performed for TUNEL 
positive cells. n = 4 Statistical significance was determined by ANOVA with Bonferroni correction test. Data are shown as relative changes versus 
controls. *p < 0.05; **p < 0.01 and ***p < 0.001
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Fig. 2  Corticosterone-induced apoptosis of cortical neurons is caused by ER stress. A ER stress or apoptosis-related proteins was measured by 
immunoblot in corticosterone or ISRIB-treated cells. B Quantification of CHOP protein levels shown in A. The relative expression of protein was 
normalized to β-actin. n = 4 C Quantification of cleaved caspase3/total caspase-3 protein levels shown in A. n = 4 D Quantification of Bcl2 protein 
levels shown in A. The relative expression of protein was normalized to β-actin. n = 4 E Quantification of Bax protein levels shown in A. The relative 
expression of protein was normalized to β-actin. n = 4 Statistical significance was determined by ANOVA with Bonferroni correction test. Data are 
shown as relative changes versus controls. *p < 0.05; **p < 0.01 and ***p < 0.001
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Fig. 3  The characterization of A-EVs. A Particle size distribution of A-EVs measured by NTA. B–F Flow cytometry analysis of EV surface markers (CD9, 
CD63, CD81) and internal protein markers (GM130 and Calnexin). G TEM images of A-EVs. White bar represents 100 μm
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Inc., MA, US). Data acquisition and analysis were per-
formed using NovoExpress software.

Cell viability assay (WST‑8 assay)
Cell viability assay was described previously [28] in brief, 
for analysis of cell viability, 1 × 104 cells/well were seed 
in a 96 well plates and incubated for 24 h at 37 °C under 
humidified conditions (5% CO2 atmosphere). Then, 
cells were treated with CORT at concentrations of 50, 
100, 200, 250 and 500 μM for 24 h. Then, EZ-Cytox Kit 
(WST-8 assay; DoGen, Seoul, Korea) was added to each 
well at a final concentration of 0.5 mg/mL, and the cells 
were incubated for 2  h at 37  °C under humidified con-
ditions (5% CO2 atmosphere). Finally, absorbance was 
measured at 450 nm using a microplate reader (GloMax, 
Promega, WI, USA).

Immunoblotting
Western blotting was performed as described previ-
ously [29, 30]. Tissue lysates from hippocampal region 
were prepared using RIPA buffer and the sample was 
centrifuged at 12,000  rpm for 10  min at 4  °C, then the 
supernatant was collected and protein content was deter-
mined by Pierce BCA Protein Assay Kit (Thermo Fisher 
Scientific, Waltham, MA, USA) following the manufac-
turer’s protocol. Proteins were separated on 8%, 10% or 
15% SDS-PAGE gradient gel and transferred onto PVDF 
transfer membrane (Thermo Fisher Scientific, Waltham, 
MA, USA). Then the membrane was incubated with rab-
bit anti-Caspase-3 (#9662, Cell Signaling Technology, 
Danvers, MA, USA), mouse anti-BAX (SC-20067, Santa 
Cruz Biotechnology, Dallas, TX, USA), mouse anti-Bcl2 
(SC-7382, Santa Cruz Biotechnology, Dallas, TX, USA), 
rabbit anti-GRP78 (ab21685, Abcam, Cambridge, UK), 
rabbit anti-CHOP (MBS9606693, MyBioSource, San 
Diego, CA, USA), mouse anti-ATF4 (SC-390063, Santa 
Cruz Biotechnology, Dallas, TX, USA) and mouse anti-
β-actin (A5316, Thermo Fisher Scientific, Waltham, MA, 
USA) at 4 °C overnight. Appropriate secondary antibod-
ies conjugated to HRP were used (Thermo Fisher Scien-
tific, Waltham, MA, USA) and the ECL reagents (Thermo 
Fisher Scientific, Waltham, MA, USA) were used for 
immunodetection. For quantification of band intensity, 
blots from 3 independent experiments for each molecule 

of interest were used. Signals were measured using 
ImageJ software and represented by relative intensity 
versus control. β-actin was used as an internal control to 
normalize band intensity.

Reverse transcription PCR
Reverse transcription PCR was performed as described 
previously [29]. RNA was extracted from cultured neu-
rons using TRIZOL reagent (Thermo Fisher Scientific), 
and cDNA was synthesized from 1 µg of total RNA using 
oligo-dT and random hexamers using the Verso cDNA 
synthesis kit (Thermo Fisher Scientific). A measure of 1 µl 
of cDNA was used in reverse transcription PCR using 
Master Mix (Promega Life Sciences). The sequences of 
the primers used were GRP78 forward 5′-ACT​TGG​GGA​
CCA​CCT​ATT​CCT-3′ and reverse 5′-ATC​GCC​AAT​CAG​
ACG​CTC​C-3′, ATF4 forward 5′-ATG​GCG​CTC​TTC​
ACG​AAA​TC-3′ and reverse 5′-ACT​GGT​CGA​AGG​GGT​
CAT​CAA-3′, CHOP forward 5′-CTG​GAA​GCC​TGG​
TAT​GAG​GAT-3′ and reverse 5′-CAG​GGT​CAA​GAG​
TAG​TGA​AGGT-3′, and GAPDH forward 5′-AGG​TCG​
GTG​TGA​ACG​GAT​TTG-3′ and reverse 5′-TGT​AGA​
CCA​TGT​AGT​TGA​GGTCA-3′.

TUNEL assay and microscopy
TUNEL assay was performed according to manufac-
turer’s instructions (DeadEnd™ Fluorometric TUNEL 
System, catalog number: G3250, Promega, Madison, WI, 
USA) to detect cell death in the cultured cortical neuron. 
The assay stained in the green channel at 488 nm. DAPI 
was applied as a nuclear counterstain in the blue channel 
at 461 nm. Images were taken with an Olympus FV3000 
fluorescent microscope and Olympus software. Expo-
sure settings were adjusted to minimize oversaturation. 
For analyzing cultured cells, more than 20 fields scanned 
horizontally and vertically were examined in each condi-
tion. Cell numbers were described in figure legends. The 
calculated values were averaged, and some results were 
recalculated as relative changes versus control.

Statistical analysis
Normal distribution was tested using the Kolmogorov–
Smirnov test, and variance was compared. Unless oth-
erwise stated, statistical significance was determined by 

Fig. 4  The protective effect of A-EVs against corticosterone-induced apoptosis in cortical neurons. A Representative fluorescence images of 
TUNEL staining in corticosterone with or without A-EVs-treated primary cultured cortical neurons. Scale bar = 50 μm B TUNEL-positive cells/nuclei 
by image were quantified. n = 4 C Cell viability was measured after treatment in corticosterone with or without A-EVs-treated for 24 h. n = 6 D 
Apoptosis-related proteins was measured by immunoblot in corticosterone or A-EVs-treated cells. E Expression of cleaved caspase3/total caspase-3 
protein level was quantified. n = 4 F Quantification of Bcl2 protein levels. n = 4 G Quantification of Bax protein levels. n = 4. The expression of protein 
was normalized to β-actin. Statistical significance was determined by ANOVA with Bonferroni correction test. Data are shown as relative changes 
versus controls. *p < 0.05; **p < 0.01 and ***p < 0.001

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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one-way or two-way analysis of variance (ANOVA) fol-
lowed by the Bonferroni post hoc test for multiple com-
parisons. Data were analyzed using GraphPad Prism 
(GraphPad Software, Inc. La Jolla, CA, USA) and pre-
sented as mean (±) SEM. P values were indicated in fig-
ure legends.

Results
CORT exposure induces neuronal apoptosis in cultured 
cortical neurons
To examine the cytotoxic effects of CORT in cultured 
cortical neurons, we cultured cortical neurons from 
embryonic day 15 (E15) mice for 7  days, exposed the 
cortical neurons to varying doses of CORT (50, 100, 
200, 250, 500 μM) for 24 h and assessed cell viability by 
WST-8 assays. As shown in Fig.  1A, lower concentra-
tions (50–100 μM) of CORT for 24 h did not significantly 
change the cell viability, while higher doses (200–500 μM) 
decreased cell survival. Next, we assessed the level of 
cleaved caspase-3 in the lysates of the CORT-induced 
cortical neurons. We found that the levels of cleaved cas-
pase-3 were dose-dependently increased by 81%, 156% 
and 177% after exposure to high doses (200–500 μM) in 
the CORT-induced cortical neurons (Fig. 1B, C). Finally, 
to confirm the cytotoxic effects of CORT in cultured cor-
tical neurons, we performed TUNEL staining assays. We 
found that lower concentrations (50–100 μM) of CORT 
for 24  h did not significantly change the number of 
TUNEL-labeled cortical neurons. However, the number 
of TUNEL-labeled cortical neurons was dose-depend-
ently increased by 120%, 113% and 116% after exposure 
to high doses (200–500 μM) of CORT (Fig. 1D, E). These 
results indicate that CORT exposure induced cytotoxicity 
in cultured cortical neurons.

CORT exposure induces ER stress in cultured cortical 
neurons
To investigate whether ER stress is involved in CORT-
induced apoptosis of cortical neurons, we cultured cor-
tical neurons from E15 mice for 7  days and pretreated 
them with an ER stress inhibitor, ISRIB, for 1 h, followed 
by CORT exposure for 24 h. Then, we assessed the lev-
els of the ER stress marker CHOP in the lysates of the 

cultured cortical neurons. We found that the CHOP level 
was increased by 138% in the CORT-induced cortical 
neurons (Fig. 2A, B). However, pretreatment with ISRIB 
restored CHOP expression in the CORT-induced cortical 
neurons (Fig. 2A, B). Next, we assessed the levels of apop-
totic markers such as cleaved caspase-3, Bax and Bcl2 in 
the lysates of the cultured cortical neurons. The levels of 
cleaved caspase-3 and Bax were increased by 287% and 
122%, respectively, in the CORT-induced cortical neu-
rons (Fig. 2A, C, E). Moreover, we found that the level of 
Bcl2 was decreased by 26% in the CORT-induced cortical 
neurons (Fig. 2A, D). However, pretreatment with ISRIB 
rescued cleaved caspase-3, Bax and Bcl2 expression in 
the CORT-induced cortical neurons (Fig.  2A, C–E). 
Finally, to confirm ER stress-mediated apoptosis in the 
CORT-induced cortical neurons, we performed TUNEL 
staining assays. Pretreatment of cortical neurons with 
ISRIB significantly inhibited CORT-mediated apopto-
sis (Fig. 2F, G). These results show that CORT exposure 
activates neuronal apoptosis by inducing ER stress in cul-
tured cortical neurons.

A‑EVs suppresses neuronal apoptosis in CORT‑induced 
cortical neurons
Recent evidence has shown that A-EVs induce neuronal 
protection and enhance neurological recovery. Thus, 
we investigated whether A-EVs could induce neuronal 
protection in the CORT-induced cortical neurons. As 
shown in Fig. 3, the round spherical shape of the A-EVs 
was observed by TEM analysis, and their mean diameter 
was determined to be 175.1  nm. FACS analysis revealed 
that A-EVs were positive for EV markers, including CD9 
(92.81%), CD63 (100.00%) and CD81 (100.00%), whereas 
negative expression of the non-EV markers GM130 
(3.06%) and Calnexin (4.63%) were observed. Based on the 
concentration-dependent effects of CORT on neuronal 
toxicity in cultured cortical neurons, we cultured corti-
cal neurons from E15 mice for 7  days, and the cultured 
cortical neurons were pretreated with different numbers 
(5 × 105–107 per mL) of A-EVs (A-EVs5, A-EVs6, A-EVs7) 
for 30 min followed by administration of 200 μM CORT 
for 24 h. Then, we assessed the number of apoptotic cells 
in the cultured cortical neurons by TUNEL staining. As 

(See figure on next page.)
Fig. 5  Effect of A-EVs on corticosterone-induced ER stress in cortical neurons. A A-EVs restores CORT-induced ER-stress related GPR78, ATF4, and 
CHOP mRNA levels. ER stress-related mRNAs, GRP78, ATF4, and CHOP, were measured by RT-PCR. B Quantification of GRP78 mRNA level shown. 
The fold change of GRP78 was normalized to GAPDH. n = 4. C Quantification of ATF4 mRNA level shown. The fold change of ATF4 was normalized 
to GAPDH. n = 4. D Quantification of CHOP mRNA was analyzed. The fold change of CHOP was normalized to GAPDH. n = 4 E EV ameliorated 
CORT-induced ER stress in cortical neurons. ER stress-related proteins, GPR78, ATF4 and CHOP, were measured by immunoblot. F Expression of 
GRP78 was quantified and normalized to β-actin. n = 4 G Expression of ATF4 level is analyzed. The expression of ATF4 was normalized to β-actin. 
n = 4 H Quantification of CHOP protein level was analyzed. The expression of protein was normalized to β-actin. n = 4 Statistical significance was 
determined by ANOVA with Bonferroni correction test. Data are shown as relative changes versus controls. *p < 0.05; **p < 0.01 and ***p < 0.001
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Fig. 5  (See legend on previous page.)
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expected, CORT exposure increased the number of apop-
totic neurons by 113% compared with that of the con-
trols (Fig.  4A, B). Importantly, pretreatment of neurons 
with A-EVs6 and A-EVs7 suppressed CORT-induced cell 
death in the cultured cortical neurons (Fig. 4A, B). Next, 
we assessed the cell viability by WST-8 assays. Consist-
ently, CORT exposure decreased the cell viability by 32% 
compared with that of the controls (Fig.  4C). However, 
pretreatment of neurons with A-EVs7 rescued CORT-
induced neuronal cell death (Fig. 4C). Finally, we assessed 
the levels of cleaved caspase-3, Bax and Bcl2 in the lysates 
of cortical neurons. We found that the levels of caspase-3 
and Bax were increased by 242% and 170%, respectively, 
in the CORT-induced cortical neurons (Fig.  4D–F). 

However, pretreatment with A-EVs7 rescued the levels 
of cleaved caspase-3 and Bax (Fig.  4C–F). As expected, 
CORT exposure decreased the level of Bcl2 by 39% com-
pared with the control (Fig.  4D, G). However, pretreat-
ment of neurons with A-EVs7 restored the level of Bcl2 in 
the CORT-induced cortical neurons (Fig.  4D, G). These 
results suggest that A-EVs prevent neuronal cell death 
induced by CORT in cultured cortical neurons.

A‑EVs suppresses neuronal apoptosis by inhibition of ER 
stress in CORT‑induced cortical neurons
Based on the antiapoptotic effects of A-EVs in CORT-
induced cortical neurons, we investigated whether 

Fig. 6  A schematic model illustrating an effect of A-EVs on CORT-induced apoptosis in the cortical neurons via inhibition of ER stress
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pretreatment with A-EVs7 could also lead to alterations 
in ER stress in CORT-induced cortical neurons. We cul-
tured cortical neurons from E15 mice for 7 days, and the 
cultured cortical neurons were pretreated with A-EVs7 
for 30 min followed by administration of 200 μM CORT 
for 24 h. Using RT-PCR, we first measured the transcript 
levels of ER stress-related proteins such as GRP78, ATF4 
and CHOP in the cultured cortical neurons. We found 
that the GRP78, ATF4 and CHOP mRNA levels were 
increased by 42%, 30% and 245%, respectively, in the 
CORT-induced cortical neurons compared with the con-
trol neurons (Fig.  5A–D). However, pretreatment with 
A-EVs7 restored the GRP78, ATF4 and CHOP mRNA 
levels (Fig. 5A–D).

Next, we assessed the expression levels of GRP78, 
ATF4 and CHOP by immunoblotting of the cultured cor-
tical neurons (Fig.  5E–H). Similarly, we found that the 
protein levels of GRP78, ATF4 and CHOP increased by 
108%, 124% and 68%, respectively, in the CORT-induced 
cortical neurons compared with the control neurons 
(Fig. 5E–H). Importantly, pretreatment with A-EVs7 res-
cued GRP78, ATF4 and CHOP protein expression in the 
CORT-induced cultured cortical neurons. These results 
suggest that A-EVs inhibit ER stress in cultured cortical 
neurons.

Discussion
In this study, we show that CORT induces neuronal apop-
tosis by activating ER stress and that pretreatment with 
A-EVs ameliorates CORT-induced apoptosis. In cortical 
neurons, the activation of ER stress plays an essential role 
in CORT-induced neuronal apoptosis. However, interest-
ingly, A-EVs suppressed CORT-induced neuronal apop-
tosis by inhibiting ER stress (Fig. 6). Our results provide 
novel insights into molecular targets for CORT-induced 
neuronal cell death. Moreover, elucidation of the mecha-
nisms of CORT-induced neuronal cell death could have 
implications for the future development of antiapoptotic 
drugs.

The corticosteroid-type hormone CORT is produced in 
the adrenal cortex. The CORT circulates the whole body 
via bloodstream, and its persistent exposure exerts a toxic 
effect on neurons [31, 32] and induces depression- and 
anxiety-like behaviors in rodents [14, 33]. More specifi-
cally, CORT causes synaptic abnormalities by altering the 
dendritic architecture of cultured cortical and hippocam-
pal neurons [14, 18, 34, 35], and it also suppresses adult 
neurogenesis in the dentate gyrus [36, 37] and embryonic 
neural stem cells proliferation [38]. Furthermore, CORT 
induces apoptotic neuronal death [15]. Here, CORT 
exposure induced a significant increase of TUNEL posi-
tive cells and pro-apoptotic proteins in mouse cortical 
neurons. ER stress is one of the triggers for apoptotic cell 

death [39, 40], which is also observed in CORT-exposed 
PC12 cells [41] and hippocampal neurons [42]. In this 
study, the involvement of ER stress in CORT-induced 
apoptosis was revealed via measuring the signaling path-
way proteins expression and inhibitor-mediated restora-
tion. Upon ER stress, accumulation of unfolded proteins 
leads to dissociation of GRP78, a key chaperone in ER, 
from ER transmembrane receptors. PERK is one of these 
receptors, and after dissociation, it is activated by auto-
phosphorylation [43]. Subsequently, activated PERK 
phosphorylates eIF2α, a key factor of the integrated stress 
response [44]. Phosphorylated eIF2α blocks translation 
except for some specific targets, including stress-induced 
transcription factor ATF4. During mild stress, ATF4 
promotes the expression of pro-survival genes, includ-
ing GRP78 [45] to restore the stress condition. However, 
if the stress is prolonged, ATF4 induces CHOP expres-
sion, which is a crucial pro-apoptotic factor and results in 
apoptotic cell death. [46]. CORT exposed neurons exhib-
ited elevation of GRP78, ATF4, and CHOP expression. 
ISRIB is an inhibitor of phosphorylated eIF2α actions 
[47]. ISRIB pretreatment reverted CORT-induced apop-
tosis in TUNEL assay and apoptotic protein levels. These 
results suggest that the CORT induces the cell death in 
cortical neurons via ER stress-mediated apoptosis.

In various tissues and cells, mesenchymal stem cell 
(MSC)-derived EVs alleviate ER stress and consequently 
prevent apoptosis. Placenta-derived MSC-EVs protected 
ischemic-reperfusion injured kidneys through the sup-
pression of ER stress [48]. Bone marrow MSC-EVs atten-
uated ER stress-mediated apoptosis by activating the 
AKT and ERK signaling in intervertebral disc cells [49]. 
Umbilical cord MSC-EVs protect the pancreatic beta-
cell from hypoxia-induced ER stress and apoptosis via 
miR-21which by inhibiting p38 MAPK phosphorylation 
[50]. Among the MSCs, abundance and accessibility are 
advantages of adipose-derived MSCs [51]. However, ER 
stress-related studies of its EVs were still limited. Here, 
A-EVs pretreatment attenuated CORT-mediated apopto-
sis, similar to ISRIB pretreatment. Expression of GRP78, 
ATF4 and CHOP also reduced by A-EVs pretreatment. 
Our findings indicate that A-EVs protects cortical neu-
rons from CORT-induced apoptosis via suppressing 
the ER stress, and these further suggest the potential 
of A-EVs in the therapeutic application into ER stress-
involved diseases.

MSC-derived EVs contained various cytokines that 
regulate cell proliferation, migration and survival [52, 
53]. Crucial components for the protective effects of 
A-EVs were not determined in the study. However, pos-
sible mediators can be suggested from previous analyses 
of our A-EVs contents [51, 54–56]. From antibody analy-
sis of cytokine analysis, TIMPs and IGF-1 were detected 
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with high levels at multiple times. TIMPs showed neu-
roprotective effects from various stress, including 
hypoxia-reoxygenation [57], neuroinflammation [58] and 
excitotoxicity [59] via regulation of calcium influx [59] 
or apoptosis signaling pathway [58, 60]. IGF1 also pro-
tects neurons from brain injury, stroke, and neuroinflam-
matory response [61]. To clarify these, detailed further 
mechanism studies are necessary.

Recent studies have demonstrated that mesenchy-
mal stem cell (MSC)-derived EVs can promote neuronal 
survival, which can lead to neurogenesis, neuronal dif-
ferentiation and neuronal regeneration and prevent neu-
ronal apoptosis [36, 62]. Indeed, we found that A-EVs 
prevent neuronal apoptosis in CORT-induced cortical 
neurons. These data are consistent with previous studies 
that showed increased neuronal survival and prevention 
of neuronal apoptosis in hippocampal neuron cultures 
after A-EVs treatment [30, 63]. Furthermore, MSC-
derived EVs alleviated the effects of stroke and brain 
injury by activating neurite remodeling, neurogenesis 
and angiogenesis in rodent models [64, 65]. EVs derived 
from dental pulp stem cells rescued 6-hydroxydopamine 
(6-OHDA)-induced apoptosis in human dopaminergic 
neurons [66]. MSC-derived EVs protected hippocam-
pal neurons from oxidative stress and synaptic damage 
by Alzheimer’s disease-linked amyloid beta oligomers 
[67]. Adipose-derived MSCs EVs promote neurogenesis 
and neurite outgrowth in neurons via regulating vari-
ous genes expression. Additionally, the adipose-derived 
MSCs rescue memory deficits in Alzheimer’s model 
mice.[68]. Overall, the novel findings of the neuropro-
tective effects of MSC-derived EVs suggest an attractive 
therapeutic alternative for neurological and neurodegen-
erative diseases.

Conclusions
We conclude from the present study that A-EVs amelio-
rates neuronal cell death induced by CORT in cultured 
cortical neurons. This study provides insight into the 
pathophysiological mechanisms of CORT and suggests 
that A-EVs could be useful in treating CORT-induced 
neuronal cell death.
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